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Abstract 

  This paper presents a hybrid method for detecting the 
Chagas disease from the ECG signals in the George B. 
Moody PhysioNet Challenge 2025 by proposing two 
computational approaches, machine learning and deep 
learning. A multi-scale one-dimensional convolutional 
neural network (CNN) was developed, incorporating three 
convolutional blocks, global average pooling, and focal 
loss to address class imbalance, achieving robust binary 
classification across 12-lead ECGs normalized to 5000 
samples. Additionally, a random forest (RF) classifier was 
trained on extracted features, including morphological 
and time-series attributes from P, QRS, and T waves, after 
denoising with a bandpass filter. Both methods were 
evaluated on a Physionet dataset, with the CNN 
demonstrating high accuracy and confidence calibration. 
These scalable techniques provide promising tools for 
automated Chagas disease detection, supporting precision 
cardiology and enhancing clinical outcomes. Moreover, it 
highlights the effectiveness of the CNN model in detecting 
Chagas disease using the focal loss function. Our team, 
Leicester Fox, had a rank of 18 and a challenge score of 
0.258 on the validation set and 0.218 on the test set of data 
for an official phase using the CNN classification model. 

 
1. Introduction 

Chagas disease, caused by Trypanosoma cruzi, affects 
an estimated 6 to 7 million people worldwide. 
Approximately 30% of infected individuals develop 
chronic Chagas cardiomyopathy (CCC), which can lead to 
arrhythmias, heart failure, and sudden cardiac death [1]. 
Among these complications, atrial fibrillation (AF) is one 
of the most common and prognostically significant, being 
strongly associated with stroke and mortality in CCC 
patients [2]. Electrocardiography (ECG) remains the 
primary tool for CCC diagnosis due to its low cost and non-

invasive nature, especially in resource-limited regions. 
However, its sensitivity for early-stage myocardial injury 
is suboptimal. Studies show that up to 40% of Chagas 
patients exhibit ECG abnormalities, including right bundle 
branch block and AF, even in early disease stages [3]. 

To address these limitations, this study proposes two 
automated ECG-based classification methods. The first is 
a multi-scale convolutional neural network (CNN) 
designed to extract hierarchical features directly from raw 
12-lead signals. The second is a classical random forest 
(RF) model that leverages 29 handcrafted morphological 
and temporal ECG features for classification. Both models 
are designed to eliminate reliance on manual interpretation 
and to enhance scalability and objectivity. 

Furthermore, we employed focal loss to address class 
imbalance and incorporated confidence calibration to 
improve model reliability in clinical settings [4, 5]. These 
strategies ensure that both models can deliver robust and 
reliable predictions, particularly when identifying Chagas-
positive patients in large or imbalanced datasets. 

Overall, these data-driven approaches offer scalable and 
practical tools for early Chagas detection. Their 
implementation could significantly benefit clinical 
workflows and public health screening, particularly in 
areas with limited diagnostic capacity [6]. 

 
2. Materials and Methodology 

The dataset used in this study is derived from three 
resources (referred to as Code-15 [7], SaMi-Trop [8], and 
PTB-XL datasets [9]), which were utilized in the George 
B. Moody PhysioNet Challenge 2025 [10, 11]. In this 
work, we propose two methods: machine learning (based 
on feature extraction and a random forest model) and deep 
learning (based on 1D-CNN model) to classify Chagas and 
non-Chagas disease based on ECG signals. 30% of the data 
from each of the three resources was used to train the CNN 
model, while samples from the Code-15 and SaMi-Trop 
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datasets were used for both training and testing the random 
forest classifier. Figure 1 shows the pipeline of the 
proposed methods. These approaches are illustrated as 
follows: 

2.1.  Convolutional Neural Network 

We developed a CNN for the automatic classification of 
ECGs. The architecture of the model is based on a multi-
scale one-dimensional CNN. The architecture consists of 
three convolutional blocks followed by global average 
pooling and fully connected (FC) layers for binary 
classification. We implemented a balanced dataset loader 
that oversampled Chagas cases and standardized ECG 
signals across 12 leads by normalizing and interpolating 
them to a fixed length of 5000 samples, thereby addressing 
class imbalance. Moreover, a combination of focal loss 
was applied to mitigate the class imbalance problem, and a 
confidence calibration loss was used to boost reliable 
positive predictions. The Adam optimizer was used to train 
and test the CNN model, incorporating weight decay and a 
dynamic learning rate with an early stopping to prevent 
overfitting. Fine-tuning was performed using pre-trained 
weights that were loaded optionally from a previous 
submission.  

2.2.  Focal Loss Function 

 The focal loss (FL) function was used to address the 
problem of imbalanced data (Chagas vs. non-Chagas 
classes), as is the case in this challenge. This function helps 
the model pay more attention to the minority (Chagas) 
cases. Focal loss ensures the CNN model is not dominated 
by majority class signals during the learning process. Focal 
loss for binary classification is formulated as: 

𝑝! =	 $
𝑝												𝑖𝑓	𝑦 = 1						(𝑐ℎ𝑎𝑔𝑎𝑠	𝑐𝑙𝑎𝑠𝑠)

1 − 𝑝									𝑖𝑓	𝑦 = 0	(𝑛𝑜𝑛 − 𝑐ℎ𝑎𝑔𝑎𝑠	𝑐𝑙𝑎𝑠𝑠)          1                                    

𝑦	 ∈ {0,1} represents the ground truth label, 𝑝 ∈ [0,1] 
represents the predicted probability for positive class 
(Chagas), and 𝑝! is the probability of the true class. The 
standard binary cross-entropy loss (BCE) is formulated as: 

𝐵𝐶𝐸(𝑝!) = 	−	𝑙og	(𝑝!)                                                      2 

The loss is small when the model predicts correctly with 
high confidence, and is large when the model predicts 
incorrectly. Therefore, focal loss modifies BCE algorithm 
by adding two factors to address the problem of 
imbalanced data. The factor α ∈ [0,1], which represents the 
class balancing factor for handling class imbalance 
explicitly by giving more weight to the minority class 
(chagas), and γ ≥ 0, which represents the focusing 

parameter, which controls how much to down-weight easy 
cases. 

𝐹𝐿(𝑝!) = 	−	𝛼	(1 − 𝑝!)"log	(𝑝!)                                       3 

For γ = 0, the FL reduces to BCE, and for γ larger than 0, 
it focuses more on hard or misclassified cases (Chagas 
class). Minority classes usually have low 𝑝!, so	(1 − 𝑝!)" 
is large, making their loss contribution larger [12].  

2.3.  RF Classifier via Feature Extraction 

The ECGs were denoised using a bandpass filter (0.5 to 
50Hz). Time-series and morphological features were then 
extracted for training and evaluating purposes. A total of 
31 features were extracted Lead II (4 features from patient 
details and other features extracted using morphology and 
time intervals of P, QRS, and T waves of each ECG signal). 
Table 1 shows the feature names that are used in this 
method.  

 

Figure 1. The pipeline of the proposed methods 
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3. Results 

Two methods were used to detect Chagas disease using 
ECG signals. The CNN model achieved the highest 
performance locally, with a challenge score of 0.45, an 
accuracy of 90.70%, an F-measure of 26.90%, an AUROC 
of 0.87, and an AUPRC of 0.223, as well as a challenge 
score of 0.258 on the validation set and 0.218 on test set of 
data on the official phase. In contrast, RF with a feature 
extraction method had lower performance locally, with a 
challenge score of 0.11 in the unofficial phase, an accuracy 
of 74.70%, an F-measure of 75.80%, an AUROC of 0.834, 
an AUPRC of 0.819, and an unofficial phase score of 0.11. 
Figure 2 shows the comparisons between the two methods 
locally. Table 2 illustrates the challenge score and the team 
rank for the official phase.  

 

 
Figure 2. Results of the two models 

Table 2. Official phase results for CNN model. 

Task Score on 
validation set 

Score on  
test set 

Rank 

Classification 0.258 0.218 18/41 
 

4. Discussion and Conclusions 

This study compared two techniques (CNN and RF) in 

ECG feature extraction for chagas cardiomyopathy. The 
result demonstrates that CNN achieved a higher Challenge 
score (0.453 vs 0.110) and accuracy (0.907 vs 0.747) 
compared to RF though at a cost of longer training time 
(two weeks vs. one hour). This aligns with the Challenge 
primary objective of maximizing recall within the top 5% 
of predicted probabilities. This metric focuses on how 
many Chagas-positive cases are captured in the highest-
ranked predictions, simulating real-world constraints 
where only a small portion of patients can be tested. The 
CNN’s strong AUROC (0.874) further supports its ability 
to rank positive cases above negatives across the entire 
dataset. Our findings demonstrate the superior 
performance of CNNs in AUROC and accuracy, which is 
consistent with the proposal by Zubair et al. Zubair et al. 
proposed that CNNs are well-suited for ECG feature 
extraction due to their ability to learn hierarchical features 
from raw signals [13]. Similarly, Xu et al. have 
demonstrated 98% accuracy of deep residual networks in 
arrhythmia detection [14]. In contrast, we have shown 
RF’s competitive performance in F-measure, reflecting its 
strength in handling class imbalances and providing stable 
predictions across heterogeneous datasets. However, due 
to heavy dependence on heavily engineered features, it 
may not capture the temporal complexity of ECG signals 
as effectively as CNNs. Similar to our report, prior 
comparative studies have shown that CNN-based methods 
outperform traditional machine learning models, including 
RF, in ECG classification [15]. Although there is a dearth 
of studies specifically on using these models for Chagas 
diagnosis, our results show that the RF model displayed a 
much better ability to recognize positive cases overall. Its 
AUPRC of 0.819 and F-measure of 0.758 show that RF 
consistently identifies Chagas-positive patients and 
maintains a strong precision-recall balance. Although its 
AUROC (0.834) was slightly lower than that of CNN, and 
its Challenge score (0.11) fell well below that of CNN, 
these results suggest that RF would be more effective in 
scenarios where more than 5% of patients can be tested or 
where a balanced approach to detection is required. 
Another key consideration is computational efficiency. 
The CNN required approximately two weeks to train. In 

Table 1. Features list extracted from ECG signals 
Patient details (4 features) P, QRS, T (15 features) Time intervals and polarity (12 features) 

Age, sex (3 features) 

P average maximum amplitude 
P average minimum amplitude 

P average amplitude range 
P average duration 
P average energy 

QRS average maximum amplitude 
QRS average minimum amplitude 

QRS average amplitude range 
QRS average duration 
QRS average energy 

T average maximum amplitude 
T average min amplitude 

T average amplitude range 
T average duration 
T average energy 

RR interval 
Heart rate 

PR interval 
QT interval 

QTC interval 
PR segment 
ST segment 
P presence 
T presence 

J wave presence 
P polarity 
T polarity 

 

 

Page 3



contrast, the Random Forest completed training in about 
one hour, making RF a much more practical choice for 
rapid deployment and iterative development. 

In conclusion our findings have some limitations, the 
Challenge score represents performance only at the 
extreme top of the ranking, not across the entire probability 
spectrum. When broader performance metrics are 
considered, the CNN performed poorly in consistently 
identifying Chagas-positive cases outside the top 5%. Its 
AUPRC (0.223) and F-measure (0.269) are both very low, 
indicating that while the CNN assigns high probabilities 
when it does identify positives, it misses many others and 
struggles to balance precision and recall. The CNN is 
optimal for the Challenge because the evaluation metric 
emphasizes ranking positives in a tiny segment of the 
population. However, in real-world applications where the 
goal is to detect as many positive cases as possible across 
a broader range of thresholds, the Random Forest model 
may be the more reliable and efficient choice.  These 
results are based on a controlled dataset within the data 
provided. When the CNN is tested on the unseen dataset, it 
performs worse in terms of the challenge score, indicating 
the need for further research into a more effective pipeline 
or model for classifying Chagas cases based on ECG. 
Future work could explore hybrid approaches or ranking-
optimized learning methods that combine CNN’s strong 
top-tier ranking performance with RF’s ability to maintain 
precision and recall across the full distribution. 
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