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Abstract

This paper presents a hybrid method for detecting the
Chagas disease from the ECG signals in the George B.
Moody PhysioNet Challenge 2025 by proposing two
computational approaches, machine learning and deep
learning. A multi-scale one-dimensional convolutional
neural network (CNN) was developed, incorporating three
convolutional blocks, global average pooling, and focal
loss to address class imbalance, achieving robust binary
classification across 12-lead ECGs normalized to 5000
samples. Additionally, a random forest (RF) classifier was
trained on extracted features, including morphological
and time-series attributes from P, ORS, and T waves, after
denoising with a bandpass filter. Both methods were
evaluated on a Physionet dataset, with the CNN
demonstrating high accuracy and confidence calibration.
These scalable techniques provide promising tools for
automated Chagas disease detection, supporting precision
cardiology and enhancing clinical outcomes. Moreover, it
highlights the effectiveness of the CNN model in detecting
Chagas disease using the focal loss function. Our team,
Leicester Fox, had a rank of 18 and a challenge score of
0.258 on the validation set and 0.218 on the test set of data
for an official phase using the CNN classification model.

1. Introduction

Chagas disease, caused by Trypanosoma cruzi, affects
an estimated 6 to 7 million people worldwide.
Approximately 30% of infected individuals develop
chronic Chagas cardiomyopathy (CCC), which can lead to
arrhythmias, heart failure, and sudden cardiac death [1].
Among these complications, atrial fibrillation (AF) is one
of the most common and prognostically significant, being
strongly associated with stroke and mortality in CCC
patients [2]. Electrocardiography (ECG) remains the
primary tool for CCC diagnosis due to its low cost and non-
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invasive nature, especially in resource-limited regions.
However, its sensitivity for early-stage myocardial injury
is suboptimal. Studies show that up to 40% of Chagas
patients exhibit ECG abnormalities, including right bundle
branch block and AF, even in early disease stages [3].

To address these limitations, this study proposes two
automated ECG-based classification methods. The first is
a multi-scale convolutional neural network (CNN)
designed to extract hierarchical features directly from raw
12-lead signals. The second is a classical random forest
(RF) model that leverages 29 handcrafted morphological
and temporal ECG features for classification. Both models
are designed to eliminate reliance on manual interpretation
and to enhance scalability and objectivity.

Furthermore, we employed focal loss to address class
imbalance and incorporated confidence calibration to
improve model reliability in clinical settings [4, 5]. These
strategies ensure that both models can deliver robust and
reliable predictions, particularly when identifying Chagas-
positive patients in large or imbalanced datasets.

Overall, these data-driven approaches offer scalable and
practical tools for early Chagas detection. Their
implementation could significantly benefit clinical
workflows and public health screening, particularly in
areas with limited diagnostic capacity [6].

2. Materials and Methodology

The dataset used in this study is derived from three
resources (referred to as Code-15 [7], SaMi-Trop [8], and
PTB-XL datasets [9]), which were utilized in the George
B. Moody PhysioNet Challenge 2025 [10, 11]. In this
work, we propose two methods: machine learning (based
on feature extraction and a random forest model) and deep
learning (based on 1D-CNN model) to classify Chagas and
non-Chagas disease based on ECG signals. 30% of the data
from each of the three resources was used to train the CNN
model, while samples from the Code-15 and SaMi-Trop
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datasets were used for both training and testing the random
forest classifier. Figure 1 shows the pipeline of the
proposed methods. These approaches are illustrated as
follows:

2.1. Convolutional Neural Network

We developed a CNN for the automatic classification of
ECGs. The architecture of the model is based on a multi-
scale one-dimensional CNN. The architecture consists of
three convolutional blocks followed by global average
pooling and fully connected (FC) layers for binary
classification. We implemented a balanced dataset loader
that oversampled Chagas cases and standardized ECG
signals across 12 leads by normalizing and interpolating
them to a fixed length of 5000 samples, thereby addressing
class imbalance. Moreover, a combination of focal loss
was applied to mitigate the class imbalance problem, and a
confidence calibration loss was used to boost reliable
positive predictions. The Adam optimizer was used to train
and test the CNN model, incorporating weight decay and a
dynamic learning rate with an early stopping to prevent
overfitting. Fine-tuning was performed using pre-trained
weights that were loaded optionally from a previous
submission.

2.2. Focal Loss Function

The focal loss (FL) function was used to address the
problem of imbalanced data (Chagas vs. non-Chagas
classes), as is the case in this challenge. This function helps
the model pay more attention to the minority (Chagas)
cases. Focal loss ensures the CNN model is not dominated
by majority class signals during the learning process. Focal
loss for binary classification is formulated as:

_ D ify=1 (chagas class)
Pe = {1 -p if y = 0 (non — chagas class)

y € {0,1} represents the ground truth label, p € [0,1]
represents the predicted probability for positive class
(Chagas), and p; is the probability of the true class. The
standard binary cross-entropy loss (BCE) is formulated as:

BCE(p,) = — log (p) 2

The loss is small when the model predicts correctly with
high confidence, and is large when the model predicts
incorrectly. Therefore, focal loss modifies BCE algorithm
by adding two factors to address the problem of
imbalanced data. The factor o € [0,1], which represents the
class balancing factor for handling class imbalance
explicitly by giving more weight to the minority class
(chagas), and y > 0, which represents the focusing

parameter, which controls how much to down-weight easy
cases.

FL(py) = —a (1 —p,)"log (p,) 3

For y = 0, the FL reduces to BCE, and for y larger than 0,
it focuses more on hard or misclassified cases (Chagas
class). Minority classes usually have low p;, so (1 — p,)¥
is large, making their loss contribution larger [12].

2.3. RF Classifier via Feature Extraction

The ECGs were denoised using a bandpass filter (0.5 to
50Hz). Time-series and morphological features were then
extracted for training and evaluating purposes. A total of
31 features were extracted Lead II (4 features from patient
details and other features extracted using morphology and
time intervals of P, QRS, and T waves of each ECG signal).
Table 1 shows the feature names that are used in this
method.
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Figure 1. The pipeline of the proposed methods
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Table 1. Features list extracted from ECG signals

Patient details (4 features) P, QRS, T (15 features)

Time intervals and polarity (12 features)

P average maximum amplitude
P average minimum amplitude
P average amplitude range
P average duration
P average energy
QRS average maximum amplitude
QRS average minimum amplitude
QRS average amplitude range
QRS average duration
QRS average energy
T average maximum amplitude
T average min amplitude
T average amplitude range

Age, sex (3 features)

RR interval
Heart rate
PR interval
QT interval
QTC interval
PR segment
ST segment
P presence
T presence
J wave presence
P polarity
T polarity

T average duration
T average energy

3. Results

Two methods were used to detect Chagas disease using
ECG signals. The CNN model achieved the highest
performance locally, with a challenge score of 0.45, an
accuracy of 90.70%, an F-measure of 26.90%, an AUROC
of 0.87, and an AUPRC of 0.223, as well as a challenge
score of 0.258 on the validation set and 0.218 on test set of
data on the official phase. In contrast, RF with a feature
extraction method had lower performance locally, with a
challenge score of 0.11 in the unofficial phase, an accuracy
of 74.70%, an F-measure of 75.80%, an AUROC of 0.834,
an AUPRC of 0.819, and an unofficial phase score of 0.11.
Figure 2 shows the comparisons between the two methods
locally. Table 2 illustrates the challenge score and the team
rank for the official phase.
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Figure 2. Results of the two models

Table 2. Official phase results for CNN model.

Task Score on Score on Rank
validation set test set

Classification 0.258 0.218 18/41
4. Discussion and Conclusions

This study compared two techniques (CNN and RF) in

ECG feature extraction for chagas cardiomyopathy. The
result demonstrates that CNN achieved a higher Challenge
score (0.453 vs 0.110) and accuracy (0.907 vs 0.747)
compared to RF though at a cost of longer training time
(two weeks vs. one hour). This aligns with the Challenge
primary objective of maximizing recall within the top 5%
of predicted probabilities. This metric focuses on how
many Chagas-positive cases are captured in the highest-
ranked predictions, simulating real-world constraints
where only a small portion of patients can be tested. The
CNN’s strong AUROC (0.874) further supports its ability
to rank positive cases above negatives across the entire
dataset. Our findings demonstrate the superior
performance of CNNs in AUROC and accuracy, which is
consistent with the proposal by Zubair et al. Zubair et al.
proposed that CNNs are well-suited for ECG feature
extraction due to their ability to learn hierarchical features
from raw signals [13]. Similarly, Xu et al. have
demonstrated 98% accuracy of deep residual networks in
arrhythmia detection [14]. In contrast, we have shown
RF’s competitive performance in F-measure, reflecting its
strength in handling class imbalances and providing stable
predictions across heterogeneous datasets. However, due
to heavy dependence on heavily engineered features, it
may not capture the temporal complexity of ECG signals
as effectively as CNNs. Similar to our report, prior
comparative studies have shown that CNN-based methods
outperform traditional machine learning models, including
RF, in ECG classification [15]. Although there is a dearth
of studies specifically on using these models for Chagas
diagnosis, our results show that the RF model displayed a
much better ability to recognize positive cases overall. Its
AUPRC of 0.819 and F-measure of 0.758 show that RF
consistently identifies Chagas-positive patients and
maintains a strong precision-recall balance. Although its
AUROC (0.834) was slightly lower than that of CNN, and
its Challenge score (0.11) fell well below that of CNN,
these results suggest that RF would be more effective in
scenarios where more than 5% of patients can be tested or
where a balanced approach to detection is required.
Another key consideration is computational efficiency.
The CNN required approximately two weeks to train. In
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contrast, the Random Forest completed training in about
one hour, making RF a much more practical choice for
rapid deployment and iterative development.

In conclusion our findings have some limitations, the
Challenge score represents performance only at the
extreme top of the ranking, not across the entire probability
spectrum. When broader performance metrics are
considered, the CNN performed poorly in consistently
identifying Chagas-positive cases outside the top 5%. Its
AUPRC (0.223) and F-measure (0.269) are both very low,
indicating that while the CNN assigns high probabilities
when it does identify positives, it misses many others and
struggles to balance precision and recall. The CNN is
optimal for the Challenge because the evaluation metric
emphasizes ranking positives in a tiny segment of the
population. However, in real-world applications where the
goal is to detect as many positive cases as possible across
a broader range of thresholds, the Random Forest model
may be the more reliable and efficient choice. These
results are based on a controlled dataset within the data
provided. When the CNN is tested on the unseen dataset, it
performs worse in terms of the challenge score, indicating
the need for further research into a more effective pipeline
or model for classifying Chagas cases based on ECG.
Future work could explore hybrid approaches or ranking-
optimized learning methods that combine CNN’s strong
top-tier ranking performance with RF’s ability to maintain
precision and recall across the full distribution.
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